Module 3- Periodic Table and Atomic Models

•

1. ATOMIC NUMBER AND MASS NUMBER

Rutherford discovered that the atom consisted of a nucleus which contains protons and neutrons. The electrons orbit around the nucleus.

Protons and neutrons have roughly the same mass, and each is about 2000 times as massive as the electron. Therefore we can say that most of the mass of the atom is located in the nucleus.

Facts about atom:

0

۲

e

The number of protons is the same as the number of electrons.

- For any given element, all nuclei have the same number of protons, but the number of neutrons may vary.
 - The charge on the electron is -e. The charge on the proton is +e.
 - The charge on the neutron is zero.

Remember: The elementary unit of charge is $e = 1.602 \times 10^{-19}$ C.

- Atomic Number is the number of protons in the nucleus, which is the same as the number of electrons in a neutral atom.
- Mass Number is the total number of neutrons and protons in the nucleus which is equal to the approximate mass of the atom to the nearest integer. (In fact the atomic mass is the sum of the masses of all the atom's components i.e., electrons, protons, and neutrons. As the electron's mass is too small, we may treat their contribution to the atomic mass as negligible.)

2. PERIODIC TABLE

The Periodic table is a listing of all known elements with their chemical symbols, atomic numbers, and atomic masses along with other information as shown in the table on page 3.

The way the table is organized in groups tells us a lot about these elements' structure and their properties. The on the right provides a key to read and understand the periodic table. Each horizontal row is called a **period** and each vertical column is called a **group**.

PHSC 001

Periodic Table of the Elements

: }

.

	1 łA	New Original		Alkali metals			Actinide series			C	Solid							18 VIIIA	0
1	H	2		Alkal	ine earth 1	netals	Po	or metals		12 g	Liquid		13	14	15	16	17	He	
	Hydrogen 1 G0794	IIA		Transition metals			No	onmetals			Gas		All	IVA	VA T	VIA	VIIA	4002602	2
ŝ	Lithium 6.941	6 4 2 Be Bery50m 9.012162		Lanthanide series			Noble gases			Tc	Symbol		B Earch 10811	C C Carbon 12:0107	1 5 Norogen 14.00674	Covgen 15,9994	51 . P Founine 18:2904032	Neon 20.1797	8
rs 4 5 6 Page 30 of 45	11 Na Sodium 22 980770	12 Mg Magnestum 24.3050	3 HIB	4 I∀B	5 VB	6 ∀I6	7 Viib	8	9 VIIIB	10	11 1B	12 IIB	13 3 Al Aluminum 26.981588	14 3 Silicon 28 0865	15 § P Prosphorus a0.078761	16 § S outfor 82.066	17 \$ C1 chiwine \$5.453	18 Ar Argon 39.948	14.00 M
	19 K Potassium 39.0983	20 Calcium 40.075	21 8 Sc 2 Scandium 44.955910	22 2 Ti 10 11 11 11 11 11 10 12	23 V 1 Vanadium 50.9415	24 29 Cr 13 Chromium 51.9961	25 25 Mn 13 Manganese 54.938049	26 28 Fe 14 15.8457	27 28 CO 15 200 58.933200	28 Ni ¹ Nickel 58.6934	29 29 29 52 Cu 19 Copper 53,0346	30 2 Zn 19 Zinc 65:405	31 28 Ga 18 Galium 69.728	32 ⁶ Ge ¹⁸ Germanium 72.64	33 As Arsenk 74.92160	34 \$ Se selenium 76.96	35 2 18 Bromike 79.904	36 Kr Krypton 83.798	1 2 12
	37 Rb Rubinum 35 4878	38 38 Sr 19 Strontum 87 62	39 Y Y Yiinum 88.90505	40 Zr 2rconium 91.224	41 Nb 1 Noblum 32.90536	42 42 42 42 8 19 13 13 13 13 13 13 13 13 13 13	43 8 TC 13 Technetium (98)	44 28 Ruttianium 101.07	45 2 Rh Rhocium 102.90550	46 Pd 1 Pataplum 105.42	47 Ag Sliver 107 8682	48 8 Cd 19 Cadimium 112/111	49 8 10 10 10 10 10 10 10 10 10 10	50 2 Sn 19 118,210	51 8 5b 8 Anticony. 121,750	52 2 Te 12 Teturium 127 60	53 adlos 26 00447	54 Xe . 1 Xenon 131,293	N00000
	55 Čs Cesium 192.30545	56 2 Ba 19 Borium 2 1037.327	57 to 71	72 2 Hf 32 Hatrium 2 178 49	73 Ta Tentalum 130.9479	2 74 2 8 W 18 7 Ungsten 2 193 84	75 Re Rhenium 106.207	76 28 Os Os 190.23	77 2 Ir 18 192.217 77 2 18 32 15 15 15 192.217	78 Pt Platinum 195.078	79 79 71 60ki 196/96655	80 8 Hg 1 Mercury 2 200.59	81 28 T1 18 Thatlium 204.3833	82 2 Pb 52 Lead 19 207.2	83 2 Bi 92 Elemuth 200,96009	84 2 Po 32 Polonium 8 (209)	85 ⁸ At ¹⁰ Astabae (200)	86 Rn Radon (222)	20042280 3280
Ī	87 Fr 3 Francum (223)	88 2 Rainen 9 (226) 2	89 to 103	104 2 Rf 32 Failherfordium 16 (261) 2	105 Dib 33 Dubmum 1 (262)	2 106 29 8 5 6 32 8 5 6 32 2 5 6 32 2 (266) 2	107 2 Bh 32 Bohnum 13 (264) 2	108 2 Hs 32 Hassium 14 (255) 2	109 109 10 10 10 10 10 10 10 10 10 10	110 Ds 3 Damistatlium 1 (271)	8 111 2 8 Rg 10 7 Rcentgenium 18 32 8 (272) 1	112 8 19 10 10 10 10 10 10 10 10 10 10 10 10 10	113 Uut Unontrum (284)	114 Utuqi Ununquadium (209)	115 Uup Unanpensum (283)	116 Uuh Ununtestum (292)	117 Utus Ununseptium	118 Usta Ununocitum	- and a set of
Prepara	Note: The subgroup numbers 1- 18 vere adopted in 1984 by the International Union of Pure and			At	omic masse	s in parenthes	es are those	e of the most	stable or cor	nmon isotop	e.								
itory				50	2 50 2	20 2	D4 - 2	Jeskja Calubble	0 1997 Michael C	avan (mchaidaid	iyan com 13e 8e	en nigan carena	000/	<u>~0</u> 2		70 7	74	2	
Physic				57 2 La 18 Lantnamum 7 138,9005	Cerium 140.116	59 6 Pr 18 Prasecdmium 2 140.90765	Nd 18 Nd 22 Needymium 2 144.24	01 28 Promethium 2 (145)	52 58 10 24 53 53 54 54 54 54 54 54 54 54 54 54 54 54 54	63 Eu 2 Europium 151 964	Gd 25 Gd 25 Gadolinium 2 157.25	00 27 Tb 27 Terbitim 2 158.92534	00 6 Dy 20 Dyseroslum 2 162 500	HO 18 HO 29 Holmium 2 164,93032	67 259	00 68 Tm 68 168,93421	70 28 Yb 18 32 Ytterblum 2 173.94	Lutetum 174.987	9 19 32 7
Applied Chemistry. The of elements 112-118 are Latin equivalents of thos numbers		ry. The names 118 are the of those		81 2 Ac 32 Actinium 9 (227) 2	90 Th 33 Thorium 11 232,0381	91 2 Pa 32 Protectinium 20 231 03535 2	92 2 U 32 Uranium 9 236.02591 3	93 2 8 Neptunium 9 (237) 2	94 2 94 18 94 32 94 94 92 94 94 92 94 94 94 94 94 94 94 94 94 94	95 Americium (243)	2 96 2 2 96 32 32 5 Curlum 25 2 (247) 2	97 2 8 18 32 Berkelium 9 (247) 2	98 2 8 0 22 Calfornium 8 (251) 2	99 2 8 32 Einsteinkum 9 (252) 2	100 2 100 2 10 32 Fermium 8 (257) 2	101 2 110 32 110 32 18 18 18 18 18 18 18 18 18 18 18 18 18	102 2 No Nobelium 8 (269) 2	103 Lawrencium (262)	

1 H																	2 He
3 Li	4 Be											5 B	6 C	7 N	8 0	9 F	10 Ne
11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 CI	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
55 Cs	56 Ba	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Uub		114 Uuq		116 Uuh		118 Uuo
	4		5 L	7 5 a C	8 5 e F	96 Pr N	0 6 d P	1 6 m S	2 6 m E	3 6 u G	4 6 d T	5 6 b D	666 9	7 6 0 E	8 6 r T	97 mY	0 b
			8 A	999 cT	0 9 h P)1 9 a l	2 9 J N	39 PP	4 9 u A	59 mC	69 mB	7 9 k C	98 9 51 E	9 1 s F	00 1 m N	01 10 1d N	02 lo

3. THE STRUCTURE OF THE ATOM

Earlier model

The atom was once thought to be a solid ball of positive material with pudding-like consistency with electrons placed as shown in the figure. The atom was supposed to be of a uniform density.

This was an incorrect model of the atom.

Rutherford Model

Ernest Rutherford was the first to show that the atom does not have a uniform density, and that most of its mass is located at its center.

Based on his alpha-particle scattering experiment on gold, Rutherford concluded that the atom consisted of a hard central core where most of the mass of the atom is present.

Erness Rutherford won 1908 Nobel Prize for studies in radioactivity.

Bohr's model

Neils Bohr, a Danish physicist, treated the hydrogen atom as if it were an electron of charge -e orbiting in a circular path about a proton of charge +e.

Energy levels in hydrogen

Bohr also suggested that the electrons may reside in various energy levels of the atom. Three such levels are shown in the figure. In this figure "n" is the **principle quantum number** which is always an integer. n = 1 is the ground state, n = 2 is the 2nd energy level, n = 3 is the 3rd energy level, and so on. The electron can undergo a transition from a lower to higher or from a higher to lower energy level.

Energy transitions in atoms

When an atom absorbs some energy the electron can jump to a higher energy level. But the electron cannot stay in this energetic state for a long time and it will fall back to its original energy level after emitting light. This light consists of discrete particles called "*photons*". For such transitions we can say that:

- (i) Energy of photon = Energy lost by electron
- (ii) The energy of the emitted photon is equal to the difference in energy between the two levels involved in the transition.

4. RADIOACTIVITY

Radioactivity is a process by which certain elements (with unstable nuclei, e.g., U_{238} , C_{14} , etc.) emit particular forms of radiation and decay into another element.

There are three major forms of radiations known as *alpha*, (α) beta (β), and gamma (γ) radiation.

The first particle/radiation discovered in such a decaying process of an unstable nucleus was called an alpha particle because alpha is the first letter of the Greek alphabet.

An element that emits any of these forms of radiation is called a radioactive element.

Alpha emission

 U_{238} emits an alpha-particle and decays into Th₂₃₄ element as shown. Alpha particle consists of two protons and two neutrons, which is the same as a helium nucleus.

Gamma emission

Nuclei with excess energy emit gamma-rays which have extremely short-wavelength (very high energy E = hv) electromagnetic waves or photons.

Blocking radiation

Alpha particles are 8,000 times as heavy as beta particles.

Paper or clothing can easily block alpha particles, while beta particles require a few sheets of aluminum foil.

Gamma radiations are extremely dangerous, a thousand times more dangerous than x-rays. They can easily penetrate most of the material except materials that are extremely dense such as lead (Pb). Thick lead slabs are normally used to block gamma radiations in hospitals, nuclear plants etc. to minimize their harmful effects.